Waves and Stress

Measuring the mechanical strength of a material at the nanoscale is challenging . If the object we are measuring happens to be a two-dimensional material, the task amazingly difficult. But people at Castellanos-Gómez Lab are really smart. They’ve adapted a method (already used with organic thin films) to determine these materials Young Modulus that, apart from other advantages, does not require the material to be freely suspended.

To make a long story short, they compress the material. Not been freely suspended, ripples appear all over the material. The wavelength of this ripples depends only in the elastic properties of the film and the substrate, so voilá! Frankly, much easier to explain than to perform.

These results were published in Advanced Materials.

To illustrate it, and requested by Dr. Andrés Castellanos-Gómez, we did this image that made it to the back cover of Advanced Materials.

Demoreel 2017-2018

This demo has taken two years… documentaries, advertising, covers, pictures… we’ve been pretty busy lately.

Nucleation of pseudo hard-spheres

I would love to be intelligent enough to say something smart about the research of Eva González Noya, but I can’t. I know it has to do with the simulation of nucleation processes… and that’s all I have.

What I know instead is that she always gets the cover. And this time was not different.

Bioinformática con Ñ

5 years ago now, several Spanish researchers, got together to write a book describing the principles of bioinformatics. Alberto Pascual-García and Álvaro Sebastián asked us to give a hand in this free, collaborative project by designing the cover of the book. And this is what we did, in the early days of Scixel.

Keeping it clean!

Several modern applications require antireflective transparent materials. We try to avoid reflections in our screens and clean transparent coatings are essential in solar panels. Scientists have been looking for a clean, cheap and durable solution for quite long. And this is exactly what Prof. Isabel Rodriguez et al. have recently reported in Nanoscale.
Thanks to this collaboration (IMDEA Nanociencia & IMDEA Materiales) a new coating system has been developed. The methodology involves the fabrication of sub-wavelength moth-eye nanofeatures onto transparent surface composite films in a combined processing step of nanoparticle coating and surface nanoimprinting.

With this approach they’ve been able to reduced the optical reflection losses from values of 9% of typical PMMA plastic films to an optimum value of 0.6%.

We made this picture (which appeared in the back cover of Nanoscale) with the supervision of Prof. Rodriguez. It represent both the high transmission coefficient of this new coating system and its durability.

The perfect blend

FRET is a mechanism describing energy transfer between two light-sensitive molecules. Dr. Juan Cabanillas (IMDEA Nanociencia) et al. have studied different fluorene-based polymer blends to produce low threshold lasers operating between 540 and 590 nm (green/yellow). They’ve established the optimal conjugation length of the polymers (number of units) which produces a 4 times increase in optical gain and a 34 reduction in amplified spontaneous emission threshold.

In this paper it is proven how a careful configuration dramatically improves the efficiency of these systems, suggesting a lot of space for improvement. These materials show to be of great interest for electrically pumped light emission struc­tures including LEDs and LETs.

This research has appeared in the cover of Advanced Functional Materials.

The scouts finally arrived

A few months ago we made a press release on the recent work of Prof. Pere Cusachs: a beautiful research where they study how the cell interacts with its environment.

We help them made a beautiful image for them, picturing a cell exploring its surroundings. That image got particularly popular, making it to PhD manuscript covers and even t-shirts.

Finally, a different version of the picture made it to the cover of a biology journal: Trends in Cell Biology

Packing with hydrogels

Do you need to structure your macromolecules in your water solution? Now it is possible. By forming the low-molecular-weight hydrogel throughout all phases of all-aqueous emulsions, distinct, micro-compartmentalized materials were created. This structuring approach offers control over the composition of each type of the compartments by directing the partitioning of objects to be encapsulated.

We created this cover for Department of Chemical Engineering at TU Delft, with the help of Serhii Mytnyk.

Targeted Delivery

The delivery of therapeutics through the skin (topical administration) has an important advantage: it allows a targeted delivery. The problem is that only light lipophilic molecules can easily cross the outermost layer of the epidermis. This happens to be amazingly difficult for proteins: one of the reasons being their exterior is usually pretty hydrophilic.

Prof. Marcelo Calderón and co-workers (Freie Universität Berlin and University of Potsdam) have presented a method which solves this problem using nanocarrier systems. They’ve synthesized thermoresponsive nanogels which they’ve used to encapsulate the anti-TNFα fusion protein etanercept. This happens to be a pretty big protein used for the treatment of psoriasis and arthritis. Importantly, the encapsulation process, does not change its structure. Now, the protein, encapsulated in the nanogel, crosses the barrier effectively delivering the treatment.

They’ve reported their findings in Threranostics and their research made it to its cover.

We designed the picture under the close supervision of Prof. Sarah Hedtrich and Prof. Marcelo Calderón.

Amino acids in your fingerprints!

Fingermark evidence has been, and still is, extensively used in criminal investigations. But it is not about its shape and marks anymore. Chemistry and biology joined the game. At Prof. Marcel de Puit lab (Netherlands Forensic Institute), they are studying amino acid profiles obtained from fingerprints. They have come up with a method for the separation and quantification of amino acids from fingerprint.

With the help of Ward van Helmond, first author of the article, we designed this image, that made it to the cover of Analytical Methods.