Hot carriers thermalization

A research collaboration between IMDEA Nanociencia, DIPC and IFIMAC led by Roberto Otero has just proposed a new method to measure electronic temperatures in metallic nanostructures.

In particular, they show that the electronic temperature can be derived from “the shape of the tunnel electroluminescence emission edge in tunnel plasmonic nanocavities”.

This method, published in Nanoletters, will allow the study and understanding of the thermalization of nanoscale systems with picosecond resolution.

Good Vibrations

Today we want to talk about light and molecular vibrations coupling. It is known that infrared light can interact with matter through the molecules natural vibrations. What it was not so well known is that this coupling between light and matter can be so strong that it can change the material properties. But this strong-coupling-landscape has yet to be explored.

Researchers from CIC nanoGUNE BRTA (San Sebastian, Spain), the Donostia International Physics Center (San Sebastián, Spain) and the University of Oviedo (Spain) have employed a spectroscopic nanoimaging technique to achieve this strong coupling. By using “a particularly strong compression of infrared light” and a “thin layer of hexagonal boron nitride” they’ve explored in real space “how the phonon polaritons couple with the molecular vibrations” of organic molecules.

Their findings, published in Nature Photonics could have an impact in molecules detection technologies but more importantly, it opens a door to the study of quantum aspects of strong vibrational coupling.

This picture we did under the supervision of Andrei Bylinkin (first author) has been featured in the cover of Nature Photonics.

DIPC 2018 Activity Report

One of our pictures was recently used to illustrate DIPC’s 2018 activity report. Lots of great friends there doing amazing research work!

Splitting Miss Young

We participate in outreach projects every time we can. And this is one of those. Nanokomik is a comic contest organized by the research centers CIC nanoGUNE and the Donostia International Phyisics Center (DIPC). Last year’s challenge was to create a graphic story about a female or male comic superhero with “nanopowers”, that is, sophisticated skills or powers acquired through nanoscience and nanotechnology.

 

We created Miss Young, a superhero with the ability of been everywhere at the same time when nobody is observing her.

We didn’t win the contest but it certainly was a great experience to make our first comic in a traditional way.