Osmium is the key

Ana Pizarro and colleagues are a sort of modern watchmakers to my eyes. But instead of using gears and springs, they work with atoms, bonds and molecules. They carefully tailor them to produce chemical reactions in specific places that are triggered by specific conditions. In particular, they’re putting a lot of effort in molecules that work as catalysts in the cytoplasm and are triggered by pH changes.

This time they bring to our attention this beautiful specimen: [Os(η61-C6H5(CH2)3OH/O)(XY)]+ an osmium(II) tethered half-sandwich complex that has shown to carry out transfer hydrogenation reactions inside cells in a reversible way. The particular properties of this molecule could give it a central role in cancer therapies.

This work, published in Chemical Science has been featured in the cover with this image we did together with Ana Pizarro.

Glowing Lanthanides

It’s not the first time we bring these people to our website, and there are several reasons for that. First of all, they keep hiring us to make cool images for them. But the main reason is that they are doing amazing work in the field of chemical sensors.

These time Dr. Juan Cabanillas-Gonzalez and Dr. Jose Sanchez Costa, both at IMDEA Nanociencia (Spain) bring us “A novel gas sensing mechanism exploiting lanthanide luminescence modulation upon NO2 adsorption”. To make a long story short, this is a crystal that glows beautifully when NO2 is around.

This has not only useful practical applications in the detection of NO2 market; it would make a beautiful luminescence displays without requiring expensive electronics. “But it also provides understanding of the nature and effects of NO2 interactions within the MOFs and the signal transduction mechanism.” You can read more about it in their recent article.

The picture we did to illustrate this experiment was featured on the cover of the Journal of Physical Chemistry Letters.

 

 

pH‐dependent switches

We’ve had the fortune to work for researchers that study the drug delivery process. Ana Pizarro at IMDEA Nanociencia is focusing her efforts in the understanding of how and when to activate this drugs. In an article written for Chemistry A European Journal in 2017 she showed how to control in‐tumor drug activation via pH.

Innactive Ruthenium(II) arene complexes are innocuous and unable to interact with their molecular target. However, at a certain proton concentration this molecules are activated making it possible for them to bind to DNA.

Tumors happen to have a different pH than their environment making this complexes a possible option as drug switches.

I inexcusably forgot this work, considering the importance I give to medical related researchs. Her work was featured in the cover of the journal.

 

It comes in colors everywhere

A research group at IMDEA Nanociencia (together with the University of Grenoble and Berkeley) have presented a new switchable iron-based coordination polymer, which works as a reversible acetonitrile sensor.

Coordination polymers are emerging as molecular sensing materials for a variety of reasons: they are not toxic, environmentally friendly and above all, they’re highly responsive to a wide variety of external stimuli.

This polymer in particular, the unutterable {[Fe(H2O)2(CH3CN)2(pyrazine)](BF4)2·(CH3CN)2}, happens to be an excellent acetonitrile sensor: a toxic volatile organic compound, that makes its detection a major issue. The desorption of interstitial acetonitrile changes reversibly the color of the polymer together with its electronic and magneto–structural properties.

On request of José Sánchez Costa and Enrique Burzuri we made this picture, showing the reversibility of the process, that made it to the back cover of Chemical Science.

 

Keeping it clean!

Several modern applications require antireflective transparent materials. We try to avoid reflections in our screens and clean transparent coatings are essential in solar panels. Scientists have been looking for a clean, cheap and durable solution for quite long. And this is exactly what Prof. Isabel Rodriguez et al. have recently reported in Nanoscale.
Thanks to this collaboration (IMDEA Nanociencia & IMDEA Materiales) a new coating system has been developed. The methodology involves the fabrication of sub-wavelength moth-eye nanofeatures onto transparent surface composite films in a combined processing step of nanoparticle coating and surface nanoimprinting.

With this approach they’ve been able to reduced the optical reflection losses from values of 9% of typical PMMA plastic films to an optimum value of 0.6%.

We made this picture (which appeared in the back cover of Nanoscale) with the supervision of Prof. Rodriguez. It represent both the high transmission coefficient of this new coating system and its durability.

The perfect blend

FRET is a mechanism describing energy transfer between two light-sensitive molecules. Dr. Juan Cabanillas (IMDEA Nanociencia) et al. have studied different fluorene-based polymer blends to produce low threshold lasers operating between 540 and 590 nm (green/yellow). They’ve established the optimal conjugation length of the polymers (number of units) which produces a 4 times increase in optical gain and a 34 reduction in amplified spontaneous emission threshold.

In this paper it is proven how a careful configuration dramatically improves the efficiency of these systems, suggesting a lot of space for improvement. These materials show to be of great interest for electrically pumped light emission struc­tures including LEDs and LETs.

This research has appeared in the cover of Advanced Functional Materials.

Hybrid Nanoscopy of Hybrid Nanomaterials

Dr. Cristina Flors research group (IMDEA Nanoscience) is exploring the combination of complementary techniques to characterize materials at the nanoscale. This is a key step to the design and fabrication of new materials with improved properties and diverse functions. The combination of atomic force microscopy and super-resolution fluorescence imaging is investigated as a useful tool to characterize hybrid luminescent materials, specifically amyloid-like fibers functionalized with quantum dots.

Light and Death

At Cristina Flors’s research group they have been able to study bacterial death in real time. Bacterial death is induced through the combination of light and photosensitizers. This way it is possible inspect the pathway of photodynamic damage at the single-cell level.

Their work has been awarded with the cover of February’s issue of the Journal of Biophotonics.