Age and friction

Friction between surfaces is of great importance and it is at the core of numerous and different phenomena: from earthquakes to the development of microelectromechanical systems. A new work involving Germany, Switzerland and Spain have studied how the role of contact aging affects this friction. In particular, they’ve shown how thermally activated bond formation dramatically changes the friction strength over time.

They’ve published their findings in Physical Review X and its work, together with an image we designed for them (with the close supervision of Dr. Guilherme de Vilhena) appears today (3/12/19) in PR-X featured papers.

Drug Transport in 3D Tumor Model

We’ve already work for Prof. Calderon and his group in the past. They seem the kind of people that work directly to enlarge our life expectancy. Their main research is focused in the delivery of drugs through physiological barriers. They’ve made an important advance recently by studying how nanogels can help in the transport of drugs inside tumor tissue.

Their research, reported in Theranostics, has been awarded with the cover of the journal.

On communication in Braga

I was invited this October to give a talk about communicating Science at the Quantum Sciences & Technologies International Conference Mission 10.000 at the INL (Braga). I hadn’t been to a conference for a long time and things seem to have improved a lot! The organization was amazing and the level of the talks, outstanding.

And about me, well, I did my best. Maybe my highlight was that I put a picture of Schrodingër together with a Klingon.

Anyway, I am deeply grateful for the invitation and for the treatment they gave me.

On Wireless BioSensors!

The last paper of T. Ruzgas, J. Sotres etal at Malmö University (Sweden) starts with a disturbing statement: “It is predicted that with the development of Internet of Things technology by 2025 we expect more than 1000 connected devices per human”. With this idea in mind they are studying how to develop robust and cheap biosensors that will provide us with health information. And for that they are exploiting the ability of enzymes to “establish direct electron transfer contact with electrically conducting materials”.


This research, that made it to the cover of ChemElectroChem, is getting us closer to a cyborg-like healthier future.

DIPC 2018 Activity Report

One of our pictures was recently used to illustrate DIPC’s 2018 activity report. Lots of great friends there doing amazing research work!

On frogs, tadpoles and better batteries

My vast ignorance of chemistry doesn’t allow me to talk about this article, so here I leave you the abstract:

“Trapping negative charges in polymer electrolytes using a frog‐shaped, ether‐functionalized anion (EFA) is presented by H. Zhang, J. Carrasco, M. Armand, and co‐workers in their Communication on page 12070 ff. The bis(trifluoromethanesulfonyl)imide anion (TFSI), shown as a slippery tadpole, is highly mobile in poly(ethylene oxide) (PEO) matrix. In contrast, the ethylene oxide legs in EFA endow trapping interactions between the anion and PEO, which suppresses mobility”. [read more]

I did this picture on request and under close supervision of Dr. Heng Zang and Dr. Javier Carrasco (CIC Energigune, Spain). It deserved the inside cover of Angewandte Chemie (two in a row!).


Nature already did it!

Protein based electronics. I’ll say it again. Protein based electronics. Dr. Linda Zotty and Prof. Carlos Cuevas (IFIMAC, Spain) are working in something that stills looks like science fiction to me: protein-bioelectronics.

In particular they are studying how to turn a redox protein (Cytochrome C) into a viable switch. These proteins belong to a family of redox-active proteins that act as electron carriers in biological energy conversion systems (as in those involved in cellular respiration). Together with groups from the Weizmann Institute of Science (Israel) and Shemyakin-Ovchinnikov Institute of Bioorganic chemistry (Russia), they’ve theoretically shown how a Gold-Cytochrome-Gold structure can work as a voltage controlled switch.

Their research has been published in Angewandte Chemie and has been presented in the inside back cover.


A strain tunable single-layer MoS2 photodetector

Lets take a single layer of MoS2. Lets attach it to a surface in such a way that it can be stretched (or compressed) and there you have it: A strain tunable single-layer MoS2 photodetector. A device which uses strain to change the electrical and optical properties of 2D materials. In particular they’ve proven that with this method, they can reversibly change the photoresponsivity, the response time and the spectral bandwidth of single layered MoS2.

At Dr. Castellanos Lab, they are excelling at beautiful and elegant research. “… we demonstrated that applying tensile biaxial strain to the MoS2 device can be an effective strategy to increase both the responsivity and the wavelength bandwidth of the photodetector (at the expense of a slower response time), while compressive strain can be exploited to yield faster photodetectors (although with a lower photoresponse and with a narrower wavelength bandwidth). This adaptable optoelectronic performance of this device can be very useful to adjust the photodetector operation to different lighting conditions, similarly to human eye adaptability (scotopic vision during the night vs. photopic vision during the daylight).

Their research is a collaboration between ICMM-CSIC, Imdea Nanociencia and the State Key Laboratory of Tribology, Tsinghua University, Beijing and has been recognized with the inner cover of Materials Today.

Swiss Army SPM

Mario Lanza proposes a new scanning probe microscopy technique that can examine local phenomena, and conductive atomic force microscopy, in particular, study local electromechanical properties. Check it in Nature Electronics!

In this schematic illustration we did to illustrate his proposition, it is shown how this setup, would allow multiple experiments to be carried out simultaneously and under vacuum conditions.


Join the FTMC!

Condensed matter physics is a big unknown, even for 2nd year physics students, let alone theoretical condensed matter physics. And funny enough, this branch of physics covers a huge percentage of the reality around us. It covers quantum physics, biophysics, fluids, materials, optics and acoustics, or low temperatures, just to name a few of its interests. Yet, few people know about it.

At the Theoretical Condensed Matter Physics department, at Universidad Autónoma de Madrid are actively trying to fill this gap. They’ve made a video to inform and try to bring closer students and young people to this beautiful and amazing area of science. And Scixel happened to be around.


We’ve spend a great time working with them, discussing and creating this piece. Hope you like it and pay them a visit!