Nucleation of pseudo hard-spheres

I would love to be intelligent enough to say something smart about the research of Eva González Noya, but I can’t. I know it has to do with the simulation of nucleation processes… and that’s all I have.

What I know instead is that she always gets the cover. And this time was not different.


A year ago I started working on this short film. I was wondering, what if people had superpowers, but still had to be somehow tied to the laws of physics? What if they were able to do amazing things, but still energy or momentum had to be conserved. That’s how Momentum was born: a story of a huge misunderstanding.

Hope you like it!

Single-Molecules remember!

Our story with Basel University and in particular with Prof. Thomas Jung, goes back a long way. They are not only really nice people. They always come to me with amazingly beautiful pieces of research.

This time, Prof. Jung, together with Aisha Ahsan, have reported a new method that allows to change the physical state of just a few atoms or molecules within a network. Their efforts are focused in the manipulation of tiny molecules. The smaller the better. Why? Because this systems are perfect candidates for data storage. And the smaller the bits (molecules), the less energy it will take to modify them.

We did this picture to illustrate their research and also an animation that appeared in the video abstract of the paper.

You can read more here.

Bioinformática con Ñ

5 years ago now, several Spanish researchers, got together to write a book describing the principles of bioinformatics. Alberto Pascual-García and Álvaro Sebastián asked us to give a hand in this free, collaborative project by designing the cover of the book. And this is what we did, in the early days of Scixel.


We are huge Tintin fans. There is just one thing we love more than Tintin covers, which is apocryphal Tintin covers. So we did our own six or seven years ago.

Internet out of thin air

We’ve already talked about the “quantum internet” in several occasions. The Netherlands is making a huge effort in this field. But this new update comes from Barcelona (Spain). Nicolas Maring etal. (ICFO) has transferred quantum information between a solid crystal and a cloud of cold atomic gas. The result was published in Nature in November 2017.
The transference of qubits between nodes is of key importance in the construction of the so called “quantum internet”. This nodes can be made out of different types of matter so they can perform different functions. While we now know how to transfer information between similar systems, it was not straightforward how to do that using radically different matter configurations.


Cool, man!

[Sorry for the bad joke]

One of the issues of nanocircuits is heat dissipation. As in the macro world, at the nanoscale, it is imperative to find a way to cool circuits. Thanks to a collaboration between the University of Michigan and the Universidad Autónoma de Madrid, has been proved that a particular arrangement of molecules in nanocircuits, achieves and optimizes molecular termoelectric refrigeration.

This result has been published in Nature Nanotecnology.

Hammering viruses

Prof. Pedro de Pablo (Nanoforces Lab) has been using atomic force microscopy to break viruses for a while. Apart from the obvious pleasure that breaking things produces, their main focus is to study the stability of viruses. Viruses infect cells by releasing their highly packed genetic material. So the understanding of the stability of the viruses capsides will offer new venues for the development of novel antiviral strategies [article].

Individual impurity atoms

Early this year, Prof. Shigeki Kawai asked me to make a picture illustrating his new achievement. He, at NIMS (Japan), together with a team at Basel University, had succeeded at detecting single atom impurities in graphene ribbons.