Towards healthier photovoltaics.

Science is always teaching us how to do new things. But it is also important how it teach us how to do old stuff in a much better way. And with better we mean, in a faster, cleaner, healthier, more sustainable way. And that is kind of what Vincenzo Pecunia et al. do in their last paper.

They’ve developed a technique to study the impact of defects in lead-free-perovskites inspired materials. These materials are gathering a lot of interest since they can be key to the development of green, high-performance photovoltaics. And the efficiency of these materials is closely related to their defect tolerance.

This new technique is not only highly sensitive but it is also facile and widely applicable. We did this picture together with Vincenzo Pecunia and it has been featured in the cover of Advanced Energy Materials.

 

 

A sustainable Internet of Things ecosystem

A future of wireless self‐powered devices is upon us. The number of sensors and devices in our close environment is growing fast. And so does its energy demand.

 

In his last paper, Vincenzo Pecunia proposes the use of indoor photovoltaics: a clean sustainable way to fulfill this demand with lead‐free (and thus, non toxic) perovskite‐inspired materials. In particular Pecunia and co-workers, have studied two materials, BiOI and Cs3Sb2ClxI9‐x which happen to be really bad at harvesting sun light but present high efficiencies under indoor light conditions.

This research opens a door to the study of more efficient, non-toxic perovskite‐inspired materials and a sustainable future.

Under close supervision of Dr. Pecunia we made this picture that has been featured as the cover of Advanced Energy Materials.

 

Field Effect, now in 2D!

Despite his age, Dr. Mario Lanza has a long experience and deep knowledge on the physics and development of micro and nanoelectronic devices. In this recent article he an his coworkers discuss “the main challenges and potential solutions towards the fabrication of field effect transistors with 2D semiconducting channels”. In particular, there is a useful analysis on how this technology, now dealing with sizes that approach the interatomic distances, could be implemented in the current semiconductor industry.

This picture we did for him was featured on the cover of Advanced Functional Materials.

On Piezoelectric Layered Materials

A new addition to the nanoscopic world: the piezoelectric effect. Prof. M. Lanza et al. have studied the ability of layered MoS2 to produce electric currents under the pressure of a conductive atomic force microscope. This would allow the fabrication of self-powered devices.

This research has been published in Nanoscale Journal and its been awarded with the front cover.

China RRAM

The China RRAM International Workshop launches its first edition on June 12th-14th of 2017 at Soochow University. Resistive Random Access Memories and related applications will be discussed in this workshop.

They asked us to make a picture for the workshop website and this is what we came up with, with the help of Prof. Mario Lanza and Marco A. Villena.

Scixel goes to China

Dr. Lanza’s research activity is somewhat beyond understanding. At least beyond our understanding. Here is a good example: his new book on Conductive Atomic Force Microscopy, where he, together with leading researchers, provides a global perspective on the subject and covers novel strategies, configurations and setups where new information will be obtained with the help of CAFM.