The perfect blend

FRET is a mechanism describing energy transfer between two light-sensitive molecules. Dr. Juan Cabanillas (IMDEA Nanociencia) et al. have studied different fluorene-based polymer blends to produce low threshold lasers operating between 540 and 590 nm (green/yellow). They’ve established the optimal conjugation length of the polymers (number of units) which produces a 4 times increase in optical gain and a 34 reduction in amplified spontaneous emission threshold.

In this paper it is proven how a careful configuration dramatically improves the efficiency of these systems, suggesting a lot of space for improvement. These materials show to be of great interest for electrically pumped light emission struc­tures including LEDs and LETs.

This research has appeared in the cover of Advanced Functional Materials.

The scouts finally arrived

A few months ago we made a press release on the recent work of Prof. Pere Cusachs: a beautiful research where they study how the cell interacts with its environment.

We help them made a beautiful image for them, picturing a cell exploring its surroundings. That image got particularly popular, making it to PhD manuscript covers and even t-shirts.

Finally, a different version of the picture made it to the cover of a biology journal: Trends in Cell Biology

Packing with hydrogels

Do you need to structure your macromolecules in your water solution? Now it is possible. By forming the low-molecular-weight hydrogel throughout all phases of all-aqueous emulsions, distinct, micro-compartmentalized materials were created. This structuring approach offers control over the composition of each type of the compartments by directing the partitioning of objects to be encapsulated.

We created this cover for Department of Chemical Engineering at TU Delft, with the help of Serhii Mytnyk.

Targeted Delivery

The delivery of therapeutics through the skin (topical administration) has an important advantage: it allows a targeted delivery. The problem is that only light lipophilic molecules can easily cross the outermost layer of the epidermis. This happens to be amazingly difficult for proteins: one of the reasons being their exterior is usually pretty hydrophilic.

Prof. Marcelo Calderón and co-workers (Freie Universität Berlin and University of Potsdam) have presented a method which solves this problem using nanocarrier systems. They’ve synthesized thermoresponsive nanogels which they’ve used to encapsulate the anti-TNFα fusion protein etanercept. This happens to be a pretty big protein used for the treatment of psoriasis and arthritis. Importantly, the encapsulation process, does not change its structure. Now, the protein, encapsulated in the nanogel, crosses the barrier effectively delivering the treatment.

They’ve reported their findings in Threranostics and their research made it to its cover.

We designed the picture under the close supervision of Prof. Sarah Hedtrich and Prof. Marcelo Calderón.

Amino acids in your fingerprints!

Fingermark evidence has been, and still is, extensively used in criminal investigations. But it is not about its shape and marks anymore. Chemistry and biology joined the game. At Prof. Marcel de Puit lab (Netherlands Forensic Institute), they are studying amino acid profiles obtained from fingerprints. They have come up with a method for the separation and quantification of amino acids from fingerprint.

With the help of Ward van Helmond, first author of the article, we designed this image, that made it to the cover of Analytical Methods.

News on Parkinson

It is reassuring to know that there are people working so we don’t have smallpox or polio. At Rosario Moratalla’s lab they are trying to crack Parkinson’s disease. In one of their latter works, directed by Dr. Patricia García-Sanz and Prof. Rosario Moratalla, they explore how certain mutations in the GBA1 gene, increase the risk of developing Parkinson’s disease.

Actually they show a possible connection between the loss of β-glucocerebrosidase-1 function, cholesterol accumulation, and the disruption of cellular homeostasis in GBA1-PD. This work has appeared in the cover of Movement Disorders Journal.

We made this picture showing the effect of the mutation with the close supervision of Dr. Patricia García-Sanz.

“Theory of 2D crystals: graphene and beyond”

2D crystals seem to be here to stay. And it was time to make a review on the essential aspects of graphene and the new families of semiconducting 2D materials. Prof. Francisco Guinea (IMDEA Nanociencia) et al present minimal theoretical models for various materials. And also present some of the exciting new possibilities offered by 2D crystals.

This work deserved the cover of Chemical Society Reviews.

Quantum boxes

Do you remember the famous quantum corrals? (see figure below)

The Well (Quantum Corral) (2009) by Julian Voss-Andreae. Created using the 1993 experimental data by Lutz et al., the gilded sculpture was pictured in a 2009 review of the art exhibition

Well, lets say that Prof. Thomas A. Jung and co-workers have gone way further than that. During 2016, they presented a quantum breadboard, composed of a 2D metalorganic network creating surface state derived quantum well states in the pores. Scanning probe microscopy manipulation of Xe atoms was used to configure the Xe population of the pores, which affects the quantum state of the 2D array or breadboard.

On Piezoelectric Layered Materials

A new addition to the nanoscopic world: the piezoelectric effect. Prof. M. Lanza et al. have studied the ability of layered MoS2 to produce electric currents under the pressure of a conductive atomic force microscope. This would allow the fabrication of self-powered devices.

This research has been published in Nanoscale Journal and its been awarded with the front cover.